

Contents

General	2–4
Stockbridge dampers with forged clamps	5–6
Stockbridge dampers with cast clamps	6
Spiral dampers	7
Line guards	7
Armour rods	8

GENERAL

In the most unfavourable cases, fractures caused by vibrations on accessories and overhead lines can already occur directly after installation on the overhead line. However, fatigue fractures caused by continuous vibrations may occcur only some years after installation.

For many years, a range of effective damping measures such as reduction in tensile stress, damping by means of Stockbridge – or wide band – dampers for single conductors and twin bundles, as well as "spacer dampers" for bundle conductors, have been used for the purpose of reducing the intensity of vibrations. To be able to evaluate the need for and the effectiveness of such measures, mathematical models have been developed, which implemented in computer programmes, enable the provision of information on the vibration behaviour, and hence the lifetime, of overhead lines.

Various types of wind-induced mechanical oscillations occur on overhead lines. All known types of vibrations are shown in the table below.

	Aeolean vibrations	Galloping	Vibrations of bundled conductors
Wind	constant	constant	constant
Speed	1–7 m/s (9 m/s)	7-18 m/s	4-18 m/s
Frequency	(3) 5–50 (100) Hz	0.1–3 Hz	0.15–3 (10) Hz
Amplitude	up to 3 (5) cm	up to 10 m	Subconductor vibrations up to 50 cm Fixed vibration range up to 2 m
Conditions	Tensile stress Self-damping of conductors Armour rods Dampers Terrain	Climatic conditions (icing)	Distance of the subconductors Inclination of the conductors Positioning of the conductors distribution of the spacer- dampers
Damage	Conductor wires Fittings	Conductors Fittings Insulators	Conductors Fittings Dampers Spacers

The terrain has an important influence. Overhead lines installed in flat and open areas are more susceptible to vibrations than those installed in mountainous areas or in urban areas, and therefore have to be studied more closely.

Aeolean vibrations perpenticular to the wind direction

Subspan oscillations

Galloping on iced conductors

MOSDORFER Ges. m. b. H. A-8160 WEIZ Tel. 0 31 72 / 25 0 50, Fax 0 31 72 / 25 05 29, e-mail: office@mosdorfer.com

Design and function of Vibration-dampers

A short time after it was detected that there are vibrations on conductors, energy-absorbing dampers were installed. Up to now, this method is the most effective solution. Over the years, the design and function of these dampers has been improved, so that the current generation of dampers, gives a harmonious damping-characteristic over the full vibration-frequency-spectrum. As a result of the design of the weights and the lengths of the damper messenger cable, there will be created two, three or four resonances. It is very important that the damping-power does not decline too much between the resonances, as this would not give satisfactory damping through a wide frequency range.

The friction which is created by the bending of the damper messenger cable dissipates a large proportion of the induced wind-energy (Energy-balance). To achieve optimum damping, it is necessary to determine the correct place of installation of the dampers. This location and the expected bending-strain of the entire system of "Conductor – Damper" are calculated by a computer programme.

The function of the dampers can also be established by testing the entire system "Conductor-Damper", acc. to the applicable standards.

Not only optimum damping was the objective during the design of the dampers but also the quality of the clamping was a major consideration. Furthermore fracture of the damper messenger cable, which is also exposed to alternating loads during the operational lifetime should be prevented. Finally attention should be paid to the need to avoid bending-strain on the installation point of the dampers on the overhead lines.

For calculation of the correct solution, it is very useful to have long term measurements, of intensity and frequencies of the vibrations occurring on the lines.

Methods of Computation

Mathematical methods have been developed, which permit the calculation of the optimum system "Conductor + Damper" (armour-rods) under all conditions. These calculations have compared favourably with measured values. In the computational model it is assumed that the conductor vibrates over the whole conductor length in the form of a standing harmonic wave in one of its natural oscillation modes, and in so doing is always in resonance.

In this stationary state the power of the wind forces over the entire conductor length is equal to the mechanical power dissipated by the conductor self-damping and the dampers.

Pw = Ps + PD "Energy balance"

10/3

Bending strains on conductor with and without dampers.

Coefficient of absorption at various damper placements.

Damper footpoint velocity of the damper clamp.

The goal of an oscillation-study is to create an effective oscillation-concept at the tender stage of a project, in order to prevent problems in the field. An oscillation-study consists of the following:

Calculation of the **bending-strain** of the conductor at different frequencies and tensile-strengths, respectively with or without armour rods or dampers. Terrain can also be taken into consideration. The threshold value of the bending-strain of the conductor established by IEEE and CIGRE will also be taken into account.

A direct way to determine the effectiveness of a damping method, is to calculate the **absorption coefficient**, which is the central criteria for the analysis of vibration dampers. Damper, conductor and all other conditions will be regarded on the whole. Consideration is given to a harmonic wave approaching the damper from the middle of the field.

The absorption coefficient is defined as the fraction of the power of the incoming harmonic wave absorbed by the damper.

The calculation of the **footpoint velocity** of the damper clamp is the major criteria for the lifetime of the damper. Experience shows, failures of dampers almost always arise from wire ruptures in the messenger cable. Given a limitation of the alternating bending strain of the conductor, the admissible footpoint velocity can be computed using an equivalent mathematical model, and they thus represent a safety curve for the dampers.

Stockbridge dampers with forged clamps

for aluminium-, al-alloy-, ACSR-, AACSR- and alumoweld conductors. Weights are cast onto the messenger wire.

Material: \ M C B	Weights: cast iron, hot dip galvanised Messenger cable: steel, hot dip galvanised Clamp: aluminium-alloy, forged Bolt: stainless steel					
	Dimensio	ons in mm	Tanana	\A/a:abt		
LNr.	Conductor Ø	Length	Bolt	Nm	kg	
9301.000/EA1 9301.010/EA1 9301.020/EA1 9301.030/EA1 9301.040/EA1 9301.050/EA1 9301.060/EA1 9301.070/EA1 9301.090/EA1 9301.100/EA1	9,01–11,00 9,01–11,00 11,01–14,50 14,51–17,00 17,01–19,50 19,51–22,00 22,01–24,50 24,51–28,00 28,01–31,00 31,01–33,00 33,01–35,00 35,01–38,00	380 380 380 380 390 390 400 400 400 400	M10 M10 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12	30 30 35 35 35 35 40 40 45 45 45	1,80 1,60 1,60 1,60 1,65 1,65 1,90 1,90 1,90 1,90 2,00	
9301.120/EA1 9301.120/EA1 9303.000/EA1 9303.010/EA1 9303.020/EA1	38,01–42,00 42,01–46,00 7,00– 9,00 9,01–11,00 11 01–14,50	400 400 400 420 420 420	M12 M12 M12 M10 M10 M10	45 45 30 30 30	2,00 2,00 2,10 2,10 2,10	
9303.030/EA1 9303.040/EA1 9303.050/EA1 9303.060/EA1 9303.070/EA1 9303.080/EA1 9303.090/EA1 9303.100/EA1 9303.110/EA1 9303.120/EA1	14,51–17,00 17,01–19,50 19,51–22,00 22,01–24,50 24,51–28,00 28,01–31,00 31,01–33,00 33,01–35,00 35,01–38,00 38,01–42,00	420 420 425 425 425 425 440 440 440 440	M10 M10 M12 M12 M12 M12 M12 M12 M12 M12	35 35 35 40 40 45 45 45 45	2,10 2,10 2,20 2,20 2,40 2,40 2,40 2,40 2,60 2,60 2,60	
9303.130/EA1 9304.030/EA1 9304.040/EA1 9304.050/EA1 9304.060/EA1 9304.070/EA1 9304.080/EA1 9304.090/EA1 9304.100/EA1 9304.110/EA1 9304.120/EA1	42,01-46,00 14,51-17,00 17,01-19,50 19,51-22,00 22,01-24,50 24,51-28,00 28,01-31,00 31,01-33,00 33,01-35,00 35,01-38,00 38,01-42,00 42,01-46,00	440 450 455 455 465 465 465 465 465 465	M12 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	45 35 35 35 40 40 45 45 45 45 45 45	2,60 3,70 3,80 3,80 4,00 4,00 4,00 4,10 4,10 4,10 4,10	
9306.070/EA1 9306.080/EA1 9306.090/EA1 9306.100/EA1 9306.110/EA1 9306.120/EA1 9306.130/EA1	24,51–28,00 28,01–31,00 31,01–33,00 33,01–35,00 35,01–38,00 38,01–42,00 42,01–46,00	520 520 520 520 520 520 520 520	M12 M12 M12 M12 M12 M12 M12	40 40 45 45 45 45 45 45	5,80 5,80 5,80 6,00 6,00 6,00 6,00	

Other types see next page

10/5

l -Nr	Dimensions in mm			Torque	Weight
L. I W.	Conductor Ø	Length	Bolt	Nm	kg
9308.070/EA1 9308.080/EA1 9308.090/EA1 9308.100/EA1 9308.110/EA1 9308.120/EA1 9308.130/EA1	24,51–28,00 28,01–31,00 31,01–33,00 33,01–35,00 35,01–38,00 38,01–42,00 42,01–46,00	570 570 570 570 570 570 570	M12 M12 M12 M12 M12 M12 M12	40 45 45 45 45 45 45	7,90 7,90 7,90 8,10 8,10 8,10 8,10

Special designs:

- Bolts hot dip galvanized L.-Nr. ... 1/EA1 f. e. 9304.031/EA1
- Weights fixed with cones L.-Nr. ... /EA (without 1) f. e. 9304.030/EA

Stockbridge dampers with cast clamps

for aluminium-, al-alloy-, ACSR-, AACSR- and alumoweld conductors. Weights are cast onto the messenger cable.

Material: Weights: cast iron, hot dip galvanised Messenger cable: steel, hot dip galvanised Clamp: aluminium-alloy, cast Bolt: hot dip galvanised						
LNr.	LNr. Dimensions in mm Torque Weigh					
9301.01/G/1 9301.02/G/1 9301.03/G/1 9301.04/G/1 9303.02/G/1 9303.02/G/1 9303.02/G/1 9303.04/G/1 9303.06/G/1 9304.20/G/1 9306.03/G/1 9308.03/G/1	8,4-11,5 11,6-14,0 14,0-16,5 16,6-19,0 19,0-29,0 8,4-11,5 11,6-14,0 14,0-16,5 16,6-19,0 19,0-29,0 28,5-38,0 19,0-29,0 28,5-38,0 28,5-38,0	370 370 370 370 380 410 410 410 410 420 450 450 500 500 550	M10 M10 M10 M10 M10 M10 M10 M10 M10 M10	46 46 46 35 46 46 46 46 35 35 55 55 55 55	1,60 1,60 1,80 1,80 1,90 2,10 2,10 2,30 2,30 2,30 2,40 4,20 4,20 4,30 6,10 6,10 8,00	

Special design: stainless steel bolts

- L.-Nr. ... /R
- f. e. 9304.20/G/**R**1
- Weights fixed with cones L.-Nr. .../ (without 1) f. e. 9304.20/G

andre

Spiral dampers for light conductors,

earth wires and optical cables.

The function of this type is to disturb the vibration and this prevents the building up of a standing wave.

Material: Weather resistant PVC					
LNr.	Dimensio	ons in mm	Weight		
	Conductor Ø	Length	ĸy		
9320.04	6,35- 8,30	1240	0,28		
9320.05	8,31–11,72	1300	0,30		
9320.06	11,73–14,32	1345	0,32		
9320.07	11,33–19,30	1615	0,93		

Line guards

for aluminium-, al-alloy-, ACSR-, AACSR- and alumoweld conductors

Material: Corrosion resistant aluminium-alloy						
L N L	Dim	nensions in mm	Number of	Weight		
LINF.	Conductor Ø	Length	Rod Ø	rods	kg/100	
4772.309 4772.310 4772.311 4772.312 4772.313 4772.314 4772.315 4772.316 4772.316 4772.317 4772.318 4772.319 4772.320 4772.320 4772.321 4772.322 4772.323 4772.324 4772.325 4772.326 4772.326 4772.327 4772.328 4772.328 4772.328 4772.328 4772.330 4772.331 4772.331	Conductor Ø 9,91–10,51 10,52–11,09 11,10–11,78 11,79–12,46 12,47–13,25 13,26–14,01 14,02–14,87 14,88–15,41 15,42–16,02 16,03–16,65 16,66–17,26 17,27–17,87 17,88–18,81 18,82–20,13 20,14–21,35 21,36–22,82 22,83–24,25 24,26–25,06 25,07–25,82 25,83–27,04 27,05–27,90 27,91–29,30 29,31–30,70 30,71–32,22 32,23–33,72	Length 640 640 690 740 740 790 790 840 840 890 890 990 990 1040 1090 1140 1190 1240 1240 1300 1350 1350	Rod Ø 3,07 3,07 3,07 3,07 3,07 3,07 3,71 3,75 5,35 5,35 5,35 5,35	rods 11 12 13 14 14 14 15 14 14 14 15 15 16 17 18 19 18 17 18 17 18 17 18 17 15 16 17 15 16 17 15 16 17 18 17 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 16 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 15 16 17 18 17 18 17 18 17 15 15 16 17 18 17 15 15 16 17 18 17 15 15 16 17 18 17 15 15 16 17 18 17 15 15 16 17 18 17 15 15 16 17 18 17 18 17 15 15 16 17 18 17 15 15 16 17 18 17 15 15 16 17 18 17 15 15 16 17 18 17 15 15 15 16 17 18 17 15 15 15 16 17 18 17 15 15 15 15 15 15 16 17 17 18 17 15 15 15 15 15 15 15 15 15 15	kg/100 16,10 17,60 20,50 23,60 23,60 27,10 36,90 39,20 44,60 44,40 50,00 56,00 59,50 65,80 85,40 100,20 100,10 109,20 136,90 181,50 190,40 210,90 220,00	
4//2.334 4772.335 4772.336 4772.337	33,/3-35,32 35,33-36,59 36,60-38,32 38,33-40,10	1400 1450 1500 1550	5,35 5,87 5,87 5,87	15 15 16 16	232,40 320,00 359,90 371,90	
4772.338	40,11–41,95	1600	5,87	17	415,50	

Armour rods for other conductors and dimensions on request. Please state the lay direction of the conductor.

Armour rods

for aluminium-, al-alloy-, ACSR-, AACSR- and alumoweld conductors

Material: Corrosion resistant aluminium-alloy						
	Dimensions in mm			Number of	Weight	
LNr.	Conductor Ø	Length L	Rod Ø	rods	kg	
4772.207	7,85- 8,30	1120	3,45	9	28,90	
4772.208	8,31- 8,80	1170	3,71	9	34,90	
4772.209	8,81- 9,31	1220	3,71	9	36,50	
4772.210	9,32- 9,90	1270	3,71	10	42,30	
4772.211	9,91–10,51	1320	4,24	9	51,80	
4772.212	10,52–11,09	1320	3,71	10	43,90	
4772.213	11,10–11,78	1370	4,24	10	59,80	
4//2.214	11,/9–12,46	1370	4,24	10	59,80	
4//2.215	12,4/-13,25	1420	4,24	11	68,00	
4772.216	13,26-14,01	14/0	4,24	11	/0,50	
4772.217	14,02-14,87	1520	4,02	11	80,30	
4772.210	14,00-13,41	1570	4,02	12	97,30	
4772.219	13,42-10,02 14 02 14 45	1630	4,02	12	101,00	
4772.220	16,03-10,03	1680	4,02	12	112.00	
4772.221	17 27 17 87	1730	4,02	12	134.00	
4772.222	17,27=17,07	1830	5 18	12	1/2 70	
4772.223	18 82-19 88	1830	5 18	13	154.60	
4772.225	18.89-20.69	1930	6.35	11	207.30	
4772.226	20,70-21,48	1930	6.35	11	207.30	
4772.227	21,49-23,05	1980	6,35	12	232.10	
4772.228	23,06-23,61	2030	6,35	13	257.70	
4772.229	23,62-24,81	2240	6,35	13	284,40	
4772.230	24,82–25,82	2340	7,87	11	385,90	
4772.231	25,83-26,30	2390	7,87	12	430,10	
4772.232	26,31–27,04	2440	7,87	12	439,00	
4772.233	27,05–27,90	2540	7,87	12	430,80	
4772.234	27,91–28,95	2540	7,87	12	457,10	
4772.235	28,96–29,50	2540	7,87	13	495,20	
4772.236	29,51–30,70	2540	7,87	13	495,10	
4772.237	30,71–32,25	2540	9,27	12	634,20	
4772.238	32,26-33,72	2540	9,27	12	634,30	
4//2.239	33,/3-35,32	2540	9,2/	13	687,20	
4//2.240	35,33-36,59	2540	9,27	13	/00,30	
4//2.241	30,00-38,32	2540	9,27	14	/40,00	
4//2.242	38,33-40,10	2540	Y,Z/	14	68/,IU 75/10	
4//2.243	40,11-41,93 41.06 42.01	2540	9,27 11.00	14	/ 34,10	
4//2.244	41,70–43,71	2340	11,09	13	7/7,/0	

Armour rods for other conductors and dimensions on request. Please state the lay direction of the conductor.