

Contents

General	2
Wedge type tension clamps	3-5
Double wedge tension clamps	5
Compression dead end clamps	6–9
Repair sleeves	9
Compression joints	9
Bolted type tension clamps	10
Strain thimbles	10

GENERAL

Tension clamps are used to tension conductors and earthwires and must therefore satisfy the most stringent requirements.

There are two basic systems of tension clamps, viz:

- 1. **Detachable clamps,** such as wede-type tension clamps, thimbles, bolted type tension clamps, which allow for subsequent adjustment, and
- 2. **Non-detachable clamps,** such as compression dead-end clamps which require absolute matching to the conductor length.

Obviously our design therefore fulfills the following:

Holding forces

• The clamps must take up the maximum conductor strain, i.e. they must take up the **holding forces** stipulated in the regulations, which as a rule lie between 85% and 95% of the ultimate conductor strength. These requirements do not apply to clamps which are used in switching substrations.

The components which transmit the compressive force must be designed so that no unacceptable squeezing of the conductor may take place.

Vibrations

• **Vibrations** of the conductors are dangerous, especially at the conductor entrances of the clamps. Safety requirements can be met by a lightweight construction of the clamp and a trumpet shape of the terminations, resp. a gradual increase of conductor compression.

Corona

• Good **corona** and radio interference voltage (RIV) behaviour due to rounded shapes.

Short circuit capability

 The short circuit capability is excellent due to a narrow ranged groove which leads to a big contact area.

The connecting parts of the clamps are adjusted to the requirements.

Corrosion resistance

Maximum corrosion resistance is achieved by using a clamp material that matches with that of the conductor, for example a corrosion-resistant AlMgSi alloy for conductors made of aluminium, aldrey, etc.

Electrical losses

• **Electrical power losses** (eddy current losses) are kept to a minimum by an adequate design.

Standards

The **connecting bolts** acc. DIN 48073/5.6 or 8.8. **Split pins** are made of stainless steel or tinned copper. **Clevis eye connections** acc. DIN 48074 resp. IEC 471.

Hot dip galvanising

Steel hardware is hot dip galvanised in Mosdorfer's own plant.
Galvanising can be done in accordance to national and international standards.

abbreviation for bolts:

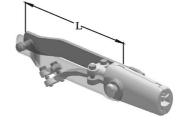
S = screw bolt N = rivet bolt

Wedge type tension clamps

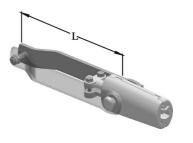
trunnion type,

for aluminium-, al-alloy-, ACSR-, AACSR- and alumoweld conductors

Wedge type tension clamps have a universal usage in all areas of overhead line construction. They are also used in substations.


For conductors with a diameter greater than 15,9 mm clamps with jumper attachments can be provided.

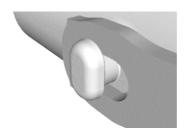
The two halves of the body are kept together because of the shape of the wedges.


Material: Body and wedges: aluminium-alloy, forged

Straps: steel, hot dip galvanised Bolt and screws: see separate table

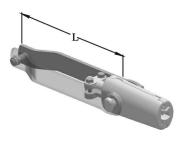
	Bolt and screws: see separate table					
LNr.	Dimensions Conductor Ø	in mm L	Breaking strength kN	Short circuit current kA	Variation	Weight kg
566.21/1 566.21/2 566.21/3 566.21/4 566.03/1 566.03/2 566.03/3 566.04/0 566.04/1 566.15/1 566.15/2 566.16/1 566.16/2 566.16/3 566.16/4 566.16/5 566.17/2 566.17/4 566.07/4 566.08/1 566.08/2	<pre></pre>	210 210 210 210 270 270 270 320 320 360 360 435 435 435 435 525 525 525 550 550	70 70 70 70 100 100 110 110 110 180 180 200 200 200 200 200 200 300 300 300 350 250 250	20 20 20 20 20 20 32 32 40 40 50 50 50 50 50 50 50 50	2 2 2 2 2 2 2 1 + 2 1 + 2 2 1 + 2 2 1 + 2 1 + 2	1,10 1,10 1,10 1,10 3,40 3,40 3,40 4,90 4,90 7,00 7,00 10,50 10,50 10,50 10,50 10,50 10,50 19,20 19,20 19,20 20,60 20,60 20,60

Variation 1 with jumper attachment.



Variation 2 without jumper attachment.

Straps for clamps < 15.8 mm \varnothing are already assembled with the body.


for Ø₹15,8 mm

for Ø>15,9 mm

Variation 1 with jumper attachment.

Variation 2 without jumper attachment.

Wedge type tension clamps, trunnion type

for steel- and copper-conductors

Material: Body: aluminium-alloy, forged

Wedges: steel or malleable iron, hot dip galvanized

Straps: steel, hot dip galvanised Bolts and screws: see seperate table

	LNr.	Dimensions in mm Conductor Ø L		Breaking strength kN	Short circuit current kA	Variation	Weight kg
56 56 56 56 56 56 56 56	66.21/S1 66.21/S2 66.21/S3 66.03/S1 66.03/S2 66.03/S3 66.16CU/1 66.16CU/2 66.16CU/3 66.16CU/4 66.17/CU2	< = 9,0 9,1-10,5 10,6-11,7 10,5-12-5 12,6-14,0 14,1-15,8 23,5-25,6 25,7-27,9 28,0-30,1 30,2-32,4 32,9-36,0 36,1-39,2	210 210 210 270 270 270 435 435 435 435 525 525	70 70 70 100 100 100 80 80 80 80	20 20 20 32 32 32 50 50 50 50	2 2 2 2 2 2 1+2 1+2 1+2 1+2 1+2	1,3 1,3 1,3 3,5 3,5 3,5 14,0 14,0 14,0 16,0 16,0

Straps for clamps < 15.8 mm \varnothing are already assembled with the body. See page 5/3. Clamps for other dimensions on request.

Locking-

device

DIN128-A

Sheet

Numbering system for wedge type clamps

Code

Α

Example:
566.15/14EA means a wedge type
clamp 19–21,1 Ø without jumper
attachment,
with connecting bolt 19; 8.8
split pin A2
and locking device acc. DIN 128-A
made of stainless steel A2F80.

1."x" =	Number	Bolt- diameter	Clevis- opening	Short circuit current kA
	1	13	14	18
	2	13	20	18
	3	16	20	28
	4	19	20	40
	5	22	20	50

Bolt-

material

5,6

5,6

Jumber

attachment

NO

NO

Split pin

material

A2

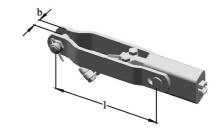
A2

			С	DIN128-A	5,6	Cu sn.	NO
			D	Sheet	5,6	Cu sn.	NO
			E	DIN128-A	8,8	A2	NO
			F	Sheet	8,8	A2	NO
3."x" =	Code	Locking	G	DIN128-A	8,8	Cu sn.	NO
3. X =	Code	device	Н	Sheet	8,8	Cu sn.	NO
			I	DIN128-A	5,6	A2	YES
	blank	8.8 galv.	J	Sheet	5,6	A2	YES
	A	A2F80	K	DIN128-A	5,6	Cu sn.	YES
			L	Sheet	5,6	Cu sn.	YES
			M	DIN128-A	8,8	A2	YES
			N	Sheet	8,8	A2	YES
			Р	DIN128-A	8,8	Cu sn.	YES
			R	Sheet	8,8	Cu sn.	YES

The 3 numbers and the codes are to be added to the L-N°.

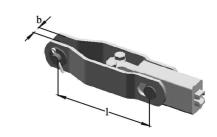
2."x" =

Double wedge tension clamps

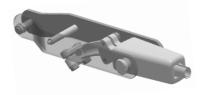

for aluminium-, al-alloy-, ACSR-, AACSR- and alumoweld conductors

To avoid damaging the conductor which might lead to notching effects the wedges are designed without serrated grooves.

This has the advantage of permitting transfer of the clamp to another place if it is necessary.


Double wedge tension clamps with jumper connections

Mate	Trunni	on: steel, l	es: high st hot dip go : steel, hot	ılvanised	uminium-alloy anised	
LNr.	Conductors Ø	Dimensions in mm Conductors Ø 1 b Bolt				Weight kg
4440.52/3 4440.52/4 4440.53/3 4440.53/4 4440.54/30 4440.55/3	13,6–16,1 13,6–16,1 13,6–16,1 13,6–16,1 17,5–19,6 20,3–22,5	230 230 230 230 380 380	14 14 20 20 20 20 20	N 13 S 13 N 19 S 19 S 19 S 19	10 10 22 22 22 30 30	2,40 2,40 2,50 2,50 5,35 5,15



Double wedge tension clamps without jumper connections

Material: Body and wedges: high strength aluminium-alloy Trunnion: steel, hot dip galvanised Bolts and straps: steel, hot dip galvanised						
LNr.		Dimensions	in mm		Short circuit	Weight
L1 VI.	Conductors Ø	I	b	Bolt	current kA	kg
4440.50	7,5- 9,6	150	14/20	N 13	10	1,06
4440.50/4	7,5–10,0	150	20	S 19	10	1,12
4440.51	10,5–12,5	150	14/20	N 13	10	1,04
4440.51/3	10,5–12,5	150	20	S 19	10	1,11
4440.52/1	13,6–16,1	230	14	N 13	10	2,25
4440.52/2	13,6–16,1	230	14	S 13	10	2,25
4440.53/1	13,6–16,1	230	20	N 19	22	2,35
4440.53/2	13,6–16,1	230	20	S 19	22	2,35

On request:

Wedge type clamps: art.-serie 267...

Wedge type clamps with hinge

Wedge type clamps art.-series 257... 260...

Wedge type clamps art.-serie 264 see cat.-part 18

Compression dead end clamps

Compression dead end clamps are used in all areas of overhead line construction, that is both for substations and for transmission lines.

The greatest possible strength is achieved with compression dead end clamps; for example: with ACSR conductors the load-bearing steel cable is held separately, so that even conductors having an extremely high steel proportion can be clamped for high-tensile stresses.

There are different compression systems in use: circumferential compression and indentation for hexagonal compression, the latter being the most popular.

Compression can be achieved with a variety of tooling systems provided the compressive force of the press is sufficient and the characteristics of the inserts and clamps match.

Compression dead end clamps are tapered at the conductor inlets to allow gradual force transmission.

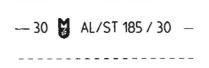
Normally the jumper terminal is bolted to the clamp flag; for smaller types, designs comprising a welded jumper can be supplied.

Compression fittings are available for every conductor type and size.

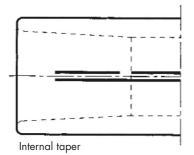
To achieve the best results the clamps are individually adapted for each conductor and therefore we need the following information, preferably on a data sheet, for the conductor:

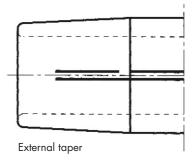
- code name or identification of the conductor
- material and cross sections
- number and diameter of wires
- ultimate breaking load

Compression fittings are filled with compound and sealed. For larger types the compound is delivered in separate tubes.


Compressing systems:

There are basically 2 compression systems which use hexagonal compression, as detailed below:


	system 1	system 2
compression:	offset (continuous)	continuous
taper:	internal taper	external taper


We are able to supply clamps according to both of the above systems, but have shown in detail in this catalogue only those clamps belonging to system 1, i.e. having internal taper.

Clamps according to system 2 are available on request.

Marking of compression dead end clamps and joints

Compression dead end clamps with eye

for ACSR- and AACSR-conductors

The steel core of the conductors will be compressed separately onto the eye.

Material: Clamp and jumper: aluminium-alloy Eye and bolts: steel, hot dip galvanised			
Serial-Nr.	Type of conductor		
4462 4465	for ACSR-conductors for AACSR-conductors		

Compression dead end clamps with clevis

for ACSR- and AACSR-conductors

The steel core of the conductors will be compressed separately onto the tongue.

Material: Clamp and jumper: aluminium-alloy Clevis and bolts: steel, hot dip galvanised			
Serial-Nr.	Type of conductor		
4463 4464	for ACSR-conductors for AACSR-conductors		

Compression dead end clamps with oval eye

for ACSR- and AACSR-conductors

The steel core of the conductors will be compressed separately onto the tongue.

Material: Clamp and jumper: aluminium-alloy Eye and bolts: steel, hot dip galvanised			
	Serial-Nr.	Type of conductor	
	4463 4465	for ACSR-conductors for AACSR-conductors	

Compression dead end clamps with eye

for Al- and Al-alloy conductors

Material: Clamp and jumper: aluminium-alloy Eye and bolts: steel, hot dip galvanised					
Serial-Nr.	Type of conductor				
4457 4455	for Al-conductors for Al-alloy-conductors				

Compression dead end clamps with clevis

for aluminium- and al-alloy conductors

Material:	Clamp and jumper: aluminium-alloy Clevis and bolts: steel, hot dip galvanised
Serial-Nr.	Type of conductor
4457 4455	for al-conductors for al-alloy conductors

for aluminium- and al-alloy conductors

Material:	Clamp and jumper: aluminium-alloy Eye and bolts: steel, hot dip galvanised
Serial-Nr.	Type of conductor
4457 4455	for al-conductors for al-alloy conductors

Compression dead end clamps with eye

for steel- and alumoweld conductors

	Steel, hot dip galvanised or stainless steel
Serial-Nr.	Type of conductor
4458 4458	for steel conductors for alumoweld conductors

Compression dead end clamps with oval eye

for steel- and alumoweld conductors

Material:	Steel, hot dip galvanised or stainless steel
Serial-Nr.	Type of conductor
4459 4459	for steel conductors for alumoweld conductors

Compression dead end clamps for traction lines.

This variation is used for tensioning the suspension wires as well as for the energised wire.

They have no jumper connection.

All kinds of material such as copper, bronze, steel and stainless steel can be clamped.

Other types on request.

for aluminium-, al-alloy-, ACSR-, AACSR- and alumoweld conductors Serial-Nr. 4880

for ACSR- and AACSR conductors

Material:	Al-sleeve: aluminium-alloy Steel-sleeve: steel, hot dip galvanised
Serial-Nr.	Type of conductor
4854 4855	for ACSR-conductors for AACSR-conductors

Compression joints full tension

for aluminium- and al-alloy conductors

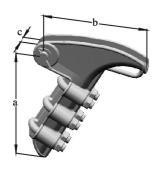
Material:	Al-sleeve: aluminium-alloy
Serial-Nr.	Type of conductor
4852 4853	for al conductors for al-alloy conductors

Compression joints full tension

for steel- and alumoweld conductors

Material:	Steel, hot dip galvanised or stainless steel
Serial-Nr.	Type of conductor
4858 4912	for steel conductors for alumoweld conductors

Bolted type tension clamps


for aluminium, al-alloy-, ACSR-, AACSR-conductors

Bolted type tension clamps are used in substations and distribution lines.

Consequently it is always necessary to give the exact data concerning conductor and stresses.

With this clamp type the conductor can be passed onwards uncut.

Fitting is extremely simple by tightening the clamp bolts to the prescribed tightening torque.

Material: Body and keeper piece: aluminium-alloy Other parts: steel, hot dip galvanised									
							Torque Nm	Short cir- cuit cur- rent kA	Weight kg
4432.08	5,0–13,5	99	83	17	N13	2 x M 8	11	10	0,45
4432.14	9,0–16,0	155	125	23	N16	3 x M 10	22	20	0,90
4432.14/1	9,0–16,0	155	125	23	N13	3 x M 10	22	20	0,90
4432.15	13,0–20,0	250	182	27	S 19	3 x M 12	38	30	2,00
4432.04/2	17,4–22,5	300	210	28	N19	3 x M 14	60	30	2,50

Bolted type tension clamps

for aluminium, al-alloy-, ACSR-, AACSR-conductors

Material: Body and keeper piece: aluminium-alloy Other parts: steel, hot dip galvanised								
LNr.	Cross section mm ²	а	Dimension b	Torque Nm	Weight kg			
4435.01/1	25–132	140	85	20	N16	60	0,90	

Strain thimbles

Bolt: steel, hot dip galvanized								
LNr.	Туре	Bolt	Dimensions in m Clevis width	ım Neck	Breaking strength kN	Short circuit current kA	Weight kg	
4410.01	1	\$13	14	60	60	10	0,40	
4410.02	1	S19	20	70	100	28	0,80	
4410.15/1	1	S19	22	70	230	40	1,20	
4410.15	1	S22	22	70	230	40	1,20	
4410.9001	2	S22	20	42	4,60*			

^{*}steel, hot dip galvanised.